
dRAID 1, 2, 3 - dRAID has no conventional RAID analogy. dRAID
keeps the idea of distributed parity but adds distributed spares
AND distributes the data blocks across more block devices.
Whereas rebuild/replacement of failed RAIDZ or RAID5/6 devices
is limited to adjacent peers dRAID is able to pull from all the block
devices that make up a virtual device and enlist their aggregate
bandwidth to replace or rebuild failed devices.

Enlarge

Checking the zpool status Enlarge

Enlarge

Enlarge

Enlarge

Enlarge

Enlarge

Enlarge

RAIDZ1, 2, 3 - Like RAID5, both data and error-correcting parity
blocks are striped across a “virtual device” (vdev). The complete
data record is broken up into chunks and spread across “N”
number of data devices and 1, 2, or 3 “parity” blocks (“P” blocks
below). Both RAIDZ and RAID5/6 generally support dedicated
spares that can, in software, be activated to replace a failing
primary device.

Enlarge

Mirror: like RAID 1, data is duplicated across multiple devices. The
data is written across multiple devices, ensuring that as long as
one copy is readable, the data is retrievable. Unlike many RAID1
implementations where two or more data sources disagree, ZFS
and its checksums know which copy is correct and which contains
errors. Mirrors can offer the full performance of a single device, but
not more (unlike stripes which can leverage the concurrency of
multiple devices).

Enlarge

Stripe: like RAID 0, data is fanned out across all participating
devices. This does not offer any redundancy or data protection
(other than the detection of corruption), but for temporary scratch
space and for ephemeral data, offers the highest performance.

Enlarge

RAIDZ2, RAID6 builds on the concept of distributed parity, with
additional parity blocks (the P1/P2 blocks below). Unlike RAID6,
RAIDZ can support up to three parity blocks per data stripe
(RAIDZ3).

Enlarge

Virtual devices (VDEVs) are …. and typically created by combining x number of
disks. There is a practical upper limit of disks with both dRAID or ZRAID virtual
devices. As we increase the number of disks that make up a VDEV, user data has to
be “chunked” evenly across all participating member disks.

In a 16 data plus 2 parity scenario, a 1MiB object write (or record) translates into
each of the 16 disks being given a 16K “chunk” of the original data. This works fine,
but if the data object is only 16K bytes, there is not an efficient way to subdivide it up
evenly across all participating disks. ZRAID has clever ways to pack “records” but
dRAID does not, which means write efficiency drops as more disks are added to a
virtual device.

On read, the problem is compounded by the fact that a stripe or record can not be
reconstructed until all disks have contributed their chunks. Aggregate read latency is
a function of the slowest device to respond. As we add more disks to a virtual device,
read operations tend to have higher completion latency.

Challenges with Using VDEVs to Create Very Large
File Systems.

Once a disk group is created, it can be partitioned into up to 1,024 logical block
volumes. There are several reasons one may wish to do that, but for OpenZFS
applications, we found no performance advantages over a single large logical
volume that encompassed the entire disk group.

It’s relevant to point out here that in transforming a disk group of up to 53 drives into
a single logical block volume, the host no longer has to manage those disks
individually but rather is presented with a single reliable block device with a capacity
of a petabyte or more.

Further, since the Exos CORVAULT has two controllers, a total of up to 106 disks
can be used to create two logical volumes, each of 1 PiB or more of capacity. Exos
CORVAULT also brings a high-performance, multi-gigabyte intelligent RAM caching
layer that can be treated as non-volatile with both mirroring and flash+ultra-capacitor
power loss protection that enables read-ahead and write caching in ways no host
server could orchestrate with volatile host-based DRAM alone.

It should also be noted that in the event of a controller failure, either controller can
take over the disk groups of the other controller while maintenance is performed,
while the host maintains access via the partner controller using well-defined
multipath hardware and software features.

The answer to the challenge with current VDEV configurations is to stripe multiple
virtual devices together.

The Exos CORVAULT platform internally implements an algorithm in hardware that is
conceptually identical to either dRAID2 or dRAID3 above, but it does so without
requiring any host compute resource, by using the resources within the Exos
CORVAULT platform itself to perform the erasure coding across the disks.. Via the
native REST, WebUI, or CLI, an administrator can combine disks into either 8+2,
16+2, or 16+3 “disk groups” where 8 or 16 is the number of data “chunks” per either
2 or 3 parity “chunks”.

Here, we illustrate with an example that builds on the previous dRAID visualizations
and lays it out linearly across 53 disks. Each “chunk” of data is distributed as eight
data blocks and two parity blocks. Additionally, the Exos CORVAULT disk group
includes reserved spare capacity on each disk that is used for repair (due to disk
failure). As such, each data stripe occupies blocks on 10 disks. The boundary of
each logical block of 10 chunks is logically adjacent to the next logical block with
dRAID2, but Exos CORVAULT leverages a pseudo-random distribution of stripe
groups across groups of disks to ensure even distribution of data across all of the
disks that are participating in the disk group. This offers numerous benefits,
including:
• Flexibility to create disk-groups with larger numbers of included disks,
independent of the erasure coding geometry (8+2, 16+2 or 16+3).
• Faster rebuilds after disk failure due to all disks contributing spare capacity
• Support for mixed capacity disks within the disk-group due to the distributed
nature of the data, parity and spare chunks across all disks within the disk-group
• Support for advanced self-healing features such as Autonomous Drive
Regeneration (ADR).

The Exos CORVAULT Platform Provides an
Advanced VDEV Solution and Compute Offload
Engine

Even if we figured out a way to “stack” ZFS vdevs on top of one another such that
rather than striping vdevs, we could construct a ZRAID vdev of several child ZRAID
vdevs, we still have the problem of managing all those individual disks from a
single host.

The Exos CORVAULT enables us to transform up to 106 disks into a pair of defect-
free, self-healing logical volumes that serve as “disks” when composing ZFS vdevs.
Where once the host server might have had to manage 106 independent disks, each
with a capacity of tens of TeraBytes (TB), it now only sees two very large block
device volumes, each with a capacity of 1 PB or more.

We can continue to scale “up” the capacity by adding more Exos CORVAULTs to the
solution. With two SAS targets per Exos CORVAULT, a stack of 8 CORVAULTs
appears to be 16 very large disk targets to the host.

We also accomplished something else in layering ZFS on top of Exos CORVAULT.
Since CORVAULT implements something very similar to dRAID internally, the top-
level ZPOOL is a product of layering erasure coding protected vdevs. Our “9’s” of
durability add together. If Exos CORVAULT offers five “9’s” of durability and a given
ZPOOL topology offers 6 “9’s” in the aggregate, they offer 11 “9’s” of durability -
a number that is largely unachievable without resorting to complex and expensive
network clustered file systems and all of the additional compute nodes required. This
implementation, often described as “multi-level erasure-coding”, offers numerous
benefits which work together to result in higher durability for the overall solution.

Hyperscaling OpenZFS with Exos CORVAULT

At the time of zpool creation, ZFS allocates vdev spacemaps, called metaslabs, on
each device based on the discovered capacity of the top-level vdev. Because the
zpool capacity presented by 8 Exos CORVAULT is over 10 PiB, the default metaslab
allocation algorithm would create far more metaslabs than necessary, resulting in
wasted disk space. After much investigation and tuning, limiting the number of
metaslabs to 2048 is recommended. This must be set before creating the zpool.
Failure to limit the metaslab allocation count can hurt overall performance and
overall space utilization.

echo 2048 > /sys/modules/zfs/parameters/zfs_vdev_ms_count_limit

The following command combines 2 raidz1 (7+1) vdevs into a large zpool named
DESTOR that includes a special metadata device on NVMe SSD (nvme1n1p1). The
actual volume names in this example have been replaced with readable names that
correlate to the A or B controller on each CORVUALT. It is highly recommended to
use the /dev/disk/by-id/wwn-0x names for zpool creation as these are fixed. Using /
dev/sdX or /dev/nvme* names are not always persistent across reboots.
zpool create DESTOR -O recordsize=1M -O atime=off -O dnodesize=auto -o
ashift=12 \
raidz1 cv1-a cv2-a cv3-a cv4-a cv5-a cv6-a cv7-a cv8-a \ raidz1 cv1-b cv2-b cv3-b
cv4-b cv5-b cv6-b cv7-b cv8-b

Add in the special metadata device mirrors:
zpool add DESTOR -f -o ashift=12 special \ mirror /dev/nvme0n1 /dev/nvme1n1 \
mirror /dev/nvme2n2 /dev/nvme3n3

The following command creates a zfs dataset with specific parameters for record
size and metadata. The primarycache=metadata parameter instructs zfs to keep all
metadata in its primary (ARC) cache. The redundant_metadata=most parameter
stores an extra copy of metadata for additional protection and improvement of
random I/O.

zfs create -o recordsize=1M -o primarycache=metadata -o
redundant_metadata=most DESTOR/<DATA-SET>

Rigorous testing has found the optimal ZFS record size using 8 Exos CORVAULT
arrays to be 1M.

Specific settings at zpool creation time

The zpool configuration for data protection and space utilization is shown below. For
maximum data protection against individual controllers or entire Exos CORVAULT
failures, the best practice is to identify and separate the volumes served by the A and
B controllers. Volumes owned by each Exos CORVAULT’ A controller will be grouped
into one VDEV, and the volumes owned by the B controllers will be grouped into a
separate VDEV. Both of the A/B VDEVS will be combined into a single zpool along
with the addition of a special mirrored vdev that will contain the data set’s metadata
on mirrored SSDs.

Creating the Zpool and ZFS data set

ZFS contains a vast number of tuning parameters that can overwhelm even for the
most seasoned storage professional. Many experts are active in the continued
development care of OpenZFS. Seagate has consulted with the OpenZFS
community and partnered with Klara Inc. to identify specific ZFS module parameters
and additional settings that take advantage of Exos CORVAULT-specific features
and the large LUN sizes recommended for the Web3 use case. As a result of this
activity, the recommended tuning parameters are shown below. For those interested
in the details of each parameter, documentation can be found here:
https://openzfs.github.io/openzfs-docs/Performance%20and%20Tuning/index.html

The specific optimizations Klara landed to upstream OpenZFS 2.2 to ensure optimal
support for Exos CORVAULT systems are detailed here:
https://github.com/suykerbuyk/disk-helpers-scripts/blob/main/
Seagate.Sponsored.Zfs.Changes.txt

Setting max_sector_kb to 8192K (8MB) – this to match Exos CORVAULT
aggregated LUNS.
<preformated>
echo 8192 > /sys/block/(device)/queue/max_sectors_kb

ZFS Specific tuning parameters:
These settings can be applied directly each module’s individual files for temporary
use. To make these parameters persistent, create a zfs.conf file in the /etc/
modprobe.d directory using following entries / settings:
options zfs vdev_ms_count_limit=8192
options zfs zfs_vdev_aggregation_limit=16777216 options zfs
zfs_max_recordsize=16777216
options zfs zfs_vdev_max_ms_shift=40 options zfs zfs_vdev_def_queue_depth=256
options zfs zfs_vdev_async_read_max_active=32 options zfs
zfs_vdev_sync_read_max_active=64 options zfs
zfs_vdev_async_write_max_active=64 options zfs
zfs_vdev_sync_write_max_active=64 options zfs zfs_commit_timeout_pct=10
options zfs metaslab_aliquot=16777216 options zfs
zfs_dirty_data_max=51539607552

The following settings are for the SPL module and can be put into an spl.conf file
similar to the above for persistence after reboots.
options spl spl_kmem_cache_kmem_threads=8 options spl
spl_kmem_cache_obj_per_slab=64 options spl spl_kmem_cache_max_size=1024

Recommended ZFS and OS Tuning:

The diagram shows that each Exos CORVAULT is split into two large protection
pools or disk groups and volumes and assigned to a separate controller. The Linux
host needs enough SAS ports to connect to each Exos CORVAULT controller (2 per
Exos CORVAULT). ZFS uses each LUN to build a zpool that provides additional data
protection using one LUN from each controller group.

The following table shows the configuration components used for this reference
architecture.

To accommodate this scale, the host uses 16 SAS ports (4 x 4-port HBA’s) with one
Mini-SAS connection into each of the Exos CORVAULT A/B controllers as shown in
the diagram below:

A high-level Block diagram is shown below.

A multi-level erasure-coded architecture provides data durability far beyond a single-
level scheme. Additional benefits of this model are highly improved rebuild times of
individual drive failures that reduce exposure to additional failures. But perhaps the
greatest benefit is the offloading of the host CPU for rebuild cycles. Individual drive
failure detection and recovery are off-loaded to the VelosCT ASIC within each Exos
CORVAULT controller, which implements the ADAPT distributed erasure
coding algorithm.

There is minimal performance degradation as experienced by the attached host
accessing the Exos CORVAULT volumes during single drive rebuild since each disk
within the disk-group is participating in both the read and write activity necessary to
complete the repair. This is contrasted to traditional RAID5/RAIDZ1 or RAID6/
RAIDZ2 implementations where the repair performance is constrained by how
quickly the system can write to a single spare/replacement disk. By leveraging
distributed spare capacity reserved on each disk, CORVAULT completes repair
activity in less time, and with less perceived performance impact to the attached host
when compared to traditional data protection schemes.

The architecture described in this paper using eight Exos CORVAULT arrays with
OpenZFS provides over 12x 9’s of data durability in addition to point-in-time
consistency. ZFS employs a
copy-on-write, point-in-time consistent model such that no file system check and
repair is ever needed.

While this document shows how 8 Exos CORVAULT arrays can provide massive
capacity using OpenZFS, the same principles can be applied when using more or
less arrays. Seagate technical marketing plans to continue building, testing, and
publishing best practices using OpenZFS on a single or multiple Exos CORVAULT
arrays with this Multi-level EC model.

A Multi-Level Erasure Code Architecture:

1) Eight Seagate Exos CORVAULTs
a) Each populated with 106 Seagate Exos 16 TB drives.
b) 848 total disks.
c) Two 53 disk, disk groups per Exos CORVAULT in a 16+2 + 10% spare configuration.
d) Each disk group is exported as a single SAS target/volume.
2) Dual Socket Xeon 6140 Server
a) 18 x 2 cores
b) 256 GB RAM
c) Four LSI Broadcom 9405-16E HBAs
3) Special Meta Data devices
a) 4 each, 3.84 TB NVMe drives in a striped mirror.

The Bill of Materials

The Reference Design for OpenZFS on Exos CORVAULT

Performance modeling for the Filecoin Storage Miner use case was accomplished
using the FIO benchmarking tool. Profiles for both storing sectors (writing 32gb files)
and proving (random reads of 16K sections of those 32 GB sectors) were run in
parallel. The results below show that the combination of kernel and ZFS module
tuning helped increase both streaming write and small random reads in some
cases 3x.

Modeling for the Filecoin Storage Miner use-case

Performance Testing

A multi-level erasure code architecture can provide data durability, consistency, and
computational efficiency for the petabyte-scale storage systems needed for
decentralized Storage Providers. With the combination of Exos CORVAULT and
OpenZFS, Seagate is leading the way with cost-effective, easy-to-implement, and
maintainable solutions. Seagate will continue to foster the development of
architectures and other best practices around the configuration of Exos CORVAULT
with OpenZFS.

Conclusion

This section provides a basic foundation for disk-based aggregation and data
protection implementations that have long been used when creating large data
storage solutions comprised of multiple individual disk drives. The goal of these
solutions is usually twofold:
1. To aggregate the capacity and performance of multiple individual drives into a
larger logical group which is easier to manage.
2. To create a solution that is tolerant to failure of one or more individual
components, such as a disk.
High level descriptions of traditional disk-based aggregation and data protection
implementations are provided here to improve the understanding of the reader when
we later discuss the more advanced distributed multi-level erasure-coding
implementation in this paper.

ZFS Topologies and their RAID analogies

For the reasons stated above, OpenZFS has quickly become the default file system
for the Filecoin network. The OpenZFS file system ensures, above all else, end-to-
end data integrity.

CRC checksums are used to detect silent data corruption with every IO operation to
and from the storage subsystems to the data landing in host memory.

The evolution of OpenZFS also post-dates most conventional RAID topologies and
so many of these prior solutions – which promised to be the answer to solve the
biggest data challenges – do not take full advantage of ZFS capabilities.

OpenZFS is making great strides in fulfilling this promise for direct-attached storage.
OpenZFS can offer the functionality of most legacy RAID systems but in ways that
are not bound by the fixed topologies of traditional RAID configurations. One
example is the ability to detect silent data corruption and silently perform inline data
repairs, in line. Another is offering the storage architect the ability to construct
VDEVs stripes that load balance IOPs.

Why OpenZFS has become the default file system
for Filecoin

OpenZFS is an advanced open-source file system and volume manager technology
designed for managing and protecting large amounts of data. It originated from the
ZFS (Zettabyte File System) project, which was initially developed by Sun
Microsystems and later open-sourced by Oracle. OpenZFS was created as a
community-driven effort to continue the development and improvement of ZFS
independent of Oracle.

OpenZFS is increasingly used in enterprise and commercial-grade environments due
to its robust features and capabilities. Of particular note are accommodations to
address the specific storage needs and data integrity requirements of large, on-
premise data infrastructure. Today, you’ll find it used to implement everything from
most SMB NAS systems to the backing storage for the world’s largest high-
performance super-computer Lustre file systems.

OpenZFS

The CORVAULT family of Seagate platforms combines certain key ideas learned
from software-defined storage platforms such as OpenZFS, CEPH, and Lustre and
combines them with Seagate’s unique insight into the optimal operational
characteristics of individual drives. As such, the Exos CORVAULT platform is
uniquely qualified to serve as a compute-offload engine for massive, direct-attached
disk arrays.

This platform combines the best of proven software-defined storage algorithms with
Seagate’s intrinsic domain expertise of hard drives to maximize longevity and
performance in ways no third party can do with generic device models.

As all the disk aggregation and management is done in hardware, the host is no
longer bound by how many disks it can manage and still performs useful work. The
Exos CORVAULT platform solves the scaling problem by performing disk
aggregation, defect management, and cache management at the enclosure
controller level instead of relying upon host compute and IO resources in other
solutions. The resulting output is storage in the form of very large block volumes. The
benefit of this approach is that compute resources per petabyte are dramatically
reduced, as is the complexity of the IO interconnects.

Seagate Exos CORVAULT

Introduction

Filecoin storage is a very well-structured storage format as a consequence of the
zero-knowledge cryptographic algorithms that underpin its immutable proofs of
unique replication across space and time. This facility allows for globally distributed,
verifiable, cryptographically unique replicas across network nodes in a cost-effective
and performant manner. Improvements can be made, however, using existing file
systems in combination with advanced storage hardware to gain even greater
performance and resilience.

The Zetabyte File system (ZFS) is unique in that it has a 20-year history that
demonstrates the ability to scale into the 10s of petabytes efficiently range for direct-
attached storage solutions.

Combining the OpenZFS protocol with very large defect-free, SAN-like volumes from
Exos CORVAULT presents a unique opportunity for the decentralized storage
ecosystem to reduce compute infrastructure by a factor of four or more all while
increasing resiliency in the process. This combination will reduce costs for storage
providers in the Filecoin network and accommodate commercial-grade storage loads
for existing web2 applications and future AI or web3 data loads.

Executive Summary
Conclusion

Performance Testing

Recommended ZFS and OS Tuning:

The Reference Design for OpenZFS on
CORVAULT

Hyperscaling OpenZFS with EXOS
CORVAULT

The CORVAULT Platform Provides an
Advanced VDEV Solution and Compute
Offload Engine

Why OpenZFS has become the default file
system for Filecoin

Introduction

Table of Contents

Seagate, Web3Mine, and Klara Inc.

Scaling Filecoin for
Commercial-Grade Loads:
Using Seagate Exos
CORVAULT technology
on OpenZFS

White Paper

© 2024 Seagate Technology LLC. All rights reserved. Seagate, Seagate Technology, and the Spiral logo are registered trademarks of Seagate Technology LLC in the United States
and/or other countries. Exos and CORVAULT are either trademarks or registered trademarks of Seagate Technology LLC or one of its affiliated companies in the United States and/
or other countries. All other trademarks or registered trademarks are the property of their respective owners. Seagate reserves the right to change, without notice, product offerings
or specifications. CS58.1-2404US

seagate.com

https://openzfs.github.io/openzfs-docs/Performance%20and%20Tuning/index.html
https://github.com/suykerbuyk/disk-helpers-scripts/blob/main/Seagate.Sponsored.Zfs.Changes.txt
https://github.com/suykerbuyk/disk-helpers-scripts/blob/main/Seagate.Sponsored.Zfs.Changes.txt

